报告题目: 自供電摩擦起電生物感測器應用於非侵入式人體生理檢測
报 告 人: 葉旻鑫 臺灣科技大學 化學工程系 助理教授
时 间: 2023年09月23日(星期六)下午16:30-17:30
地 点: 我校虎溪校区理科楼LE623
邀 请 人: 郭恒宇
报告摘要:
隨著物聯網技術快速的發展以及可穿戴式智能設備需求的增加,大量的微型電子設備(包括感測器、無線發射器和執行器等)將會在未來被廣泛應用到不同的實際場域以因應多元的應用需求。透過收集環境能源來驅動電子器件的「自供電系統」概念被提出後即引起了廣泛的關注,其中一種能收集環境機械能並將其轉換為電能的新型能量轉換技術即為「摩擦奈米發電機」。其基於兩物體界面之間的摩擦起電效應和靜電感應的耦合效應等工作原理,有成本低、結構簡單、重量輕、效率高以及多種材料選擇等優點,可以進一步作為穿戴式/可攜式感測器的電力來源以實現自供電感測系統。自供電感測器的發展克服了傳統感測器的許多限制,使健康生理監測系統更能掌握病患詳細之生理資訊,對患者的病情監控產生了莫大的幫助。本研究團隊近期利用氮摻雜石墨烯量子點修飾聚苯胺複合電極提升酵素型摩擦起電葡萄糖感測器之靈敏度,可實現以非侵入式檢測方法監控汗液中的葡萄糖濃度,並應用於穿戴式生醫感測元件。透過利用富含電子官能團的氮摻雜石墨烯量子點來增加接觸界面的表面電荷,進一步的促進了聚苯胺的電荷轉移能力進而增益界面摩擦起電之電荷量。在葡萄糖檢測方面具有良好的靈敏度(23.52 mM-1)以及抗干擾能力。此外,在穿戴式檢測方面則無需連接外部電源即可點亮LED燈,並可透過亮度來判斷其葡萄糖濃度。另外,除了使用聚苯胺導電高分子之外,本團隊也使用水凝膠來做為固定酵素的基材。此摩擦起電感測器不僅具有良好的穩定性及靈敏度,還具有自修復的功能,能更靈活地應用於穿戴式感測器。而除了酵素型摩擦起電感測器之外,本團隊還發展了非酵素型分子模板修飾電極應用於摩擦起電生物感測器,能檢測人體中的生理物質,像是乳酸及葡萄糖等,並實現自供電的監控裝置。使用3-氨基苯硼酸單體與目標分子透過電聚合法製備分子模板修飾電極,透過界面上針對目標分析物的吸脫附行為而表現出不同的界面性質,使表面電負度提高,進而增加界面摩擦時所產生的電輸出。此外,此種非酵素型摩擦起電感測器具有無需外部電源供應即可點亮多個LED燈的功能,以實現自供電警示裝置能有效監控人體中的目標分析物濃度。
报告人简介:
Min-Hsin Yeh received his B. Sc. and M. Sc. degrees in Department of Chemical Engineering from National Taiwan University of Science and Technology (Taiwan Tech) in 2007 and 2009, respectively, and Ph.D. degree in Department of Chemical Engineering from National Taiwan University (NTU) under the supervision of Prof. Kuo-Chuan Ho in 2013. He then performed as a postdoctoral research fellow at the School of Materials Science and Engineering in Georgia Institute of Technology with Prof. Zhong Lin Wang’s research group (2014~2016). Currently, he is an Assistant Professor in Department of Chemical Engineering of National Taiwan University of Science & Technology (Taiwan Tech) since 2018. His research interests are focused in the area of the nanomaterials and their applications in electrochemistry, photoelectrochemistry, energy harvesting systems, energy storage devices, and self-powered systems. He is also interested in the development and application of synchrotron radiation techniques and in-situ analytical techniques in nanomaterials study. He has published over 100 papers (Average IF=10.5, h-index=44; Citations ~7,300) in high impact journals such as Sci. Adv., Adv. Mater., Adv. Energy Mater., Adv. Fun. Mater., ACS Nano, Nano Energy, etc, He received awards for his acclaimed research contributions, such as Outstanding Young Scientist of the Associate of Chemical Sensors in Taiwan (2019), Young Investigator Award of the National Taiwan University of Science and Technology (2020), Young Investigator’s Achievement Award of the Taiwan Institute of Chemical Engineers (2022), and LCY Young Faculty Award for Outstanding Academic Performance from the Taiwan Institute of Chemical Engineers (2023).